{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Classification and Regression Metrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lecture Learning Objectives \n", "\n", "- Explain why accuracy is not always the best metric in ML.\n", "- Explain components of a confusion matrix.\n", "- Define precision, recall, and f1-score and use them to evaluate different classifiers.\n", "- Identify whether there is class imbalance and whether you need to deal with it.\n", "- Explain `class_weight` and use it to deal with data imbalance.\n", "- Appropriately select a scoring metric given a regression problem.\n", "- Interpret and communicate the meanings of different scoring metrics on regression problems. MSE, RMSE, $R^2$, MAPE.\n", "- Apply different scoring functions with `cross_validate`, `GridSearchCV` and `RandomizedSearchCV`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Five Minute Recap/ Lightning Questions \n", "\n", "- What is the difference between a business and a statistical question?\n", "- Should we ever question our clients' requests? \n", "- What is an important feature?\n", "- What are some types of feature selection methods?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some lingering questions\n", "\n", "- How can we measure our model's success besides using accuracy or $R2$?\n", "- How should we interpret our model score if we have data where there is a lot of one class and very few of another?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introducing Evaluation Metrics \n", "\n", "Up until this point, we have been scoring our models the same way every time.\n", "We've been using the percentage of correctly predicted examples for classification problems and the $R^2$ metric for regression problems.\n", "Let's discuss how we need to expand our horizons and why it's important to evaluate our models in other ways.\n", "\n", "To help explain why accuracy isn't always the most beneficial option, we are going back to the creditcard data set from the first class." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Time | \n", "V1 | \n", "V2 | \n", "V3 | \n", "V4 | \n", "V5 | \n", "V6 | \n", "V7 | \n", "V8 | \n", "V9 | \n", "... | \n", "V21 | \n", "V22 | \n", "V23 | \n", "V24 | \n", "V25 | \n", "V26 | \n", "V27 | \n", "V28 | \n", "Amount | \n", "Class | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2210 | \n", "139995.0 | \n", "0.000822 | \n", "0.176378 | \n", "-0.081084 | \n", "-2.240657 | \n", "0.266328 | \n", "-1.458596 | \n", "0.658240 | \n", "-0.340358 | \n", "-1.124072 | \n", "... | \n", "0.574194 | \n", "1.741723 | \n", "-0.110379 | \n", "0.053146 | \n", "-0.692897 | \n", "-0.207781 | \n", "0.460053 | \n", "0.307173 | \n", "15.00 | \n", "0 | \n", "
98478 | \n", "139199.0 | \n", "1.898426 | \n", "-0.544627 | \n", "0.021055 | \n", "0.233999 | \n", "-0.690212 | \n", "0.343812 | \n", "-0.976358 | \n", "0.241278 | \n", "0.957517 | \n", "... | \n", "0.118648 | \n", "0.439855 | \n", "0.323290 | \n", "0.749224 | \n", "-0.580108 | \n", "0.317277 | \n", "-0.005703 | \n", "-0.034896 | \n", "23.36 | \n", "0 | \n", "
75264 | \n", "147031.0 | \n", "1.852468 | \n", "-0.216744 | \n", "-1.956124 | \n", "0.360745 | \n", "0.415657 | \n", "-0.577488 | \n", "0.229426 | \n", "-0.215398 | \n", "0.913203 | \n", "... | \n", "-0.198389 | \n", "-0.526080 | \n", "0.093325 | \n", "0.322035 | \n", "-0.030224 | \n", "-0.113123 | \n", "-0.022952 | \n", "0.000988 | \n", "109.54 | \n", "0 | \n", "
66130 | \n", "50102.0 | \n", "-0.999481 | \n", "0.849393 | \n", "-0.556091 | \n", "0.259464 | \n", "2.298113 | \n", "3.728162 | \n", "-0.258322 | \n", "1.353233 | \n", "-0.503258 | \n", "... | \n", "-0.082967 | \n", "-0.136016 | \n", "0.092160 | \n", "1.009201 | \n", "0.216844 | \n", "-0.236471 | \n", "0.201575 | \n", "0.101621 | \n", "20.24 | \n", "0 | \n", "
82331 | \n", "41819.0 | \n", "-0.417792 | \n", "1.027810 | \n", "1.560763 | \n", "-0.029187 | \n", "-0.076807 | \n", "-0.904689 | \n", "0.688554 | \n", "-0.056332 | \n", "-0.369867 | \n", "... | \n", "-0.229592 | \n", "-0.609212 | \n", "-0.019424 | \n", "0.356282 | \n", "-0.198697 | \n", "0.072055 | \n", "0.264011 | \n", "0.120743 | \n", "2.69 | \n", "0 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
105747 | \n", "86420.0 | \n", "1.539769 | \n", "-0.710190 | \n", "-0.779133 | \n", "0.972778 | \n", "0.521677 | \n", "1.992379 | \n", "-0.538152 | \n", "0.592431 | \n", "0.530753 | \n", "... | \n", "-0.020365 | \n", "-0.203199 | \n", "0.323143 | \n", "-0.793579 | \n", "-0.611899 | \n", "-0.926726 | \n", "0.073134 | \n", "-0.018315 | \n", "147.80 | \n", "0 | \n", "
102486 | \n", "113038.0 | \n", "-0.509300 | \n", "1.128383 | \n", "-0.876960 | \n", "-0.568208 | \n", "0.819440 | \n", "-0.749178 | \n", "0.903256 | \n", "0.068764 | \n", "0.068195 | \n", "... | \n", "-0.391476 | \n", "-0.860542 | \n", "0.061769 | \n", "0.387231 | \n", "-0.334076 | \n", "0.101585 | \n", "0.085727 | \n", "-0.194219 | \n", "44.99 | \n", "0 | \n", "
4820 | \n", "142604.0 | \n", "1.906919 | \n", "-0.398941 | \n", "0.275837 | \n", "1.736308 | \n", "-0.710844 | \n", "0.682936 | \n", "-1.180614 | \n", "0.443751 | \n", "0.047498 | \n", "... | \n", "-0.022269 | \n", "-0.163610 | \n", "0.499126 | \n", "0.731827 | \n", "-1.088328 | \n", "2.005337 | \n", "-0.153967 | \n", "-0.061703 | \n", "3.75 | \n", "0 | \n", "
10196 | \n", "139585.0 | \n", "2.106285 | \n", "-0.102411 | \n", "-1.815538 | \n", "0.256847 | \n", "0.340938 | \n", "-1.002490 | \n", "0.373141 | \n", "-0.314247 | \n", "0.541619 | \n", "... | \n", "-0.060222 | \n", "-0.047904 | \n", "0.124192 | \n", "0.771908 | \n", "0.144864 | \n", "0.645126 | \n", "-0.117185 | \n", "-0.074093 | \n", "5.41 | \n", "0 | \n", "
77652 | \n", "148922.0 | \n", "2.157147 | \n", "-1.138329 | \n", "-0.775495 | \n", "-0.887122 | \n", "-1.019818 | \n", "-0.489387 | \n", "-1.024161 | \n", "-0.069089 | \n", "0.329227 | \n", "... | \n", "0.282963 | \n", "0.802273 | \n", "0.037861 | \n", "-0.642100 | \n", "-0.101534 | \n", "-0.046669 | \n", "-0.001974 | \n", "-0.052120 | \n", "39.99 | \n", "0 | \n", "
85504 rows × 31 columns
\n", "\n", " | Time | \n", "V1 | \n", "V2 | \n", "V3 | \n", "V4 | \n", "V5 | \n", "V6 | \n", "V7 | \n", "V8 | \n", "V9 | \n", "... | \n", "V21 | \n", "V22 | \n", "V23 | \n", "V24 | \n", "V25 | \n", "V26 | \n", "V27 | \n", "V28 | \n", "Amount | \n", "Class | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "... | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "85504.000000 | \n", "
mean | \n", "111177.965218 | \n", "0.069621 | \n", "-0.035379 | \n", "-0.296593 | \n", "-0.028028 | \n", "0.086975 | \n", "-0.030399 | \n", "0.025395 | \n", "-0.017036 | \n", "0.042680 | \n", "... | \n", "0.017353 | \n", "0.052381 | \n", "0.012560 | \n", "-0.009845 | \n", "-0.048255 | \n", "-0.014074 | \n", "-0.003047 | \n", "-0.002209 | \n", "92.724942 | \n", "0.004128 | \n", "
std | \n", "48027.531032 | \n", "2.108440 | \n", "1.780371 | \n", "1.631892 | \n", "1.466457 | \n", "1.452847 | \n", "1.354052 | \n", "1.361786 | \n", "1.258107 | \n", "1.131435 | \n", "... | \n", "0.776954 | \n", "0.755315 | \n", "0.670336 | \n", "0.607638 | \n", "0.548000 | \n", "0.481118 | \n", "0.414234 | \n", "0.369266 | \n", "271.297276 | \n", "0.064121 | \n", "
min | \n", "406.000000 | \n", "-56.407510 | \n", "-72.715728 | \n", "-33.680984 | \n", "-5.683171 | \n", "-40.427726 | \n", "-26.160506 | \n", "-43.557242 | \n", "-73.216718 | \n", "-13.434066 | \n", "... | \n", "-34.830382 | \n", "-10.933144 | \n", "-36.666000 | \n", "-2.824849 | \n", "-8.696627 | \n", "-2.534330 | \n", "-9.895244 | \n", "-8.656570 | \n", "0.000000 | \n", "0.000000 | \n", "
25% | \n", "50814.000000 | \n", "-0.886089 | \n", "-0.634044 | \n", "-1.228706 | \n", "-0.871992 | \n", "-0.622997 | \n", "-0.801849 | \n", "-0.550769 | \n", "-0.234941 | \n", "-0.616671 | \n", "... | \n", "-0.225345 | \n", "-0.524692 | \n", "-0.160006 | \n", "-0.365718 | \n", "-0.375934 | \n", "-0.331664 | \n", "-0.074373 | \n", "-0.058973 | \n", "5.990000 | \n", "0.000000 | \n", "
50% | \n", "133031.500000 | \n", "0.064451 | \n", "0.027790 | \n", "-0.206322 | \n", "-0.099292 | \n", "0.060853 | \n", "-0.300730 | \n", "0.076727 | \n", "0.001596 | \n", "0.003678 | \n", "... | \n", "-0.008602 | \n", "0.074564 | \n", "0.002990 | \n", "0.027268 | \n", "-0.062231 | \n", "-0.061101 | \n", "-0.003718 | \n", "-0.003411 | \n", "22.660000 | \n", "0.000000 | \n", "
75% | \n", "148203.000000 | \n", "1.832261 | \n", "0.796311 | \n", "0.767406 | \n", "0.635543 | \n", "0.735001 | \n", "0.374897 | \n", "0.632747 | \n", "0.310501 | \n", "0.658517 | \n", "... | \n", "0.215080 | \n", "0.622089 | \n", "0.177875 | \n", "0.458784 | \n", "0.317849 | \n", "0.230836 | \n", "0.088166 | \n", "0.076868 | \n", "80.000000 | \n", "0.000000 | \n", "
max | \n", "172788.000000 | \n", "2.451888 | \n", "22.057729 | \n", "4.187811 | \n", "16.715537 | \n", "34.801666 | \n", "23.917837 | \n", "44.054461 | \n", "19.587773 | \n", "9.234623 | \n", "... | \n", "27.202839 | \n", "10.503090 | \n", "20.803344 | \n", "3.979637 | \n", "7.519589 | \n", "3.155327 | \n", "10.507884 | \n", "33.847808 | \n", "19656.530000 | \n", "1.000000 | \n", "
8 rows × 31 columns
\n", "\n", " | accuracy | \n", "precision | \n", "recall | \n", "f1 score | \n", "
---|---|---|---|---|
0 | \n", "0.998792 | \n", "0.930233 | \n", "0.761905 | \n", "0.837696 | \n", "
\n", " | accuracy | \n", "precision | \n", "recall | \n", "f1 score | \n", "
---|---|---|---|---|
by-hand | \n", "0.998792 | \n", "0.930233 | \n", "0.761905 | \n", "0.837696 | \n", "
sklearn | \n", "0.998792 | \n", "0.930233 | \n", "0.761905 | \n", "0.837696 | \n", "
\n", " | longitude | \n", "latitude | \n", "housing_median_age | \n", "households | \n", "median_income | \n", "ocean_proximity | \n", "rooms_per_household | \n", "bedrooms_per_household | \n", "population_per_household | \n", "
---|---|---|---|---|---|---|---|---|---|
6051 | \n", "-117.75 | \n", "34.04 | \n", "22.0 | \n", "602.0 | \n", "3.1250 | \n", "INLAND | \n", "4.897010 | \n", "1.056478 | \n", "4.318937 | \n", "
20113 | \n", "-119.57 | \n", "37.94 | \n", "17.0 | \n", "20.0 | \n", "3.4861 | \n", "INLAND | \n", "17.300000 | \n", "6.500000 | \n", "2.550000 | \n", "
14289 | \n", "-117.13 | \n", "32.74 | \n", "46.0 | \n", "708.0 | \n", "2.6604 | \n", "NEAR OCEAN | \n", "4.738701 | \n", "1.084746 | \n", "2.057910 | \n", "
13665 | \n", "-117.31 | \n", "34.02 | \n", "18.0 | \n", "285.0 | \n", "5.2139 | \n", "INLAND | \n", "5.733333 | \n", "0.961404 | \n", "3.154386 | \n", "
14471 | \n", "-117.23 | \n", "32.88 | \n", "18.0 | \n", "1458.0 | \n", "1.8580 | \n", "NEAR OCEAN | \n", "3.817558 | \n", "1.004801 | \n", "4.323045 | \n", "
\n", " | longitude | \n", "latitude | \n", "housing_median_age | \n", "households | \n", "median_income | \n", "ocean_proximity | \n", "rooms_per_household | \n", "bedrooms_per_household | \n", "population_per_household | \n", "
---|---|---|---|---|---|---|---|---|---|
6051 | \n", "-117.75 | \n", "34.04 | \n", "22.0 | \n", "602.0 | \n", "3.1250 | \n", "INLAND | \n", "4.897010 | \n", "1.056478 | \n", "4.318937 | \n", "
20113 | \n", "-119.57 | \n", "37.94 | \n", "17.0 | \n", "20.0 | \n", "3.4861 | \n", "INLAND | \n", "17.300000 | \n", "6.500000 | \n", "2.550000 | \n", "
14289 | \n", "-117.13 | \n", "32.74 | \n", "46.0 | \n", "708.0 | \n", "2.6604 | \n", "NEAR OCEAN | \n", "4.738701 | \n", "1.084746 | \n", "2.057910 | \n", "
13665 | \n", "-117.31 | \n", "34.02 | \n", "18.0 | \n", "285.0 | \n", "5.2139 | \n", "INLAND | \n", "5.733333 | \n", "0.961404 | \n", "3.154386 | \n", "
14471 | \n", "-117.23 | \n", "32.88 | \n", "18.0 | \n", "1458.0 | \n", "1.8580 | \n", "NEAR OCEAN | \n", "3.817558 | \n", "1.004801 | \n", "4.323045 | \n", "
\n", " | fit_time | \n", "score_time | \n", "test_score | \n", "
---|---|---|---|
0 | \n", "0.037876 | \n", "0.223662 | \n", "0.695818 | \n", "
1 | \n", "0.028238 | \n", "0.203475 | \n", "0.707483 | \n", "
2 | \n", "0.029148 | \n", "0.211091 | \n", "0.713788 | \n", "
3 | \n", "0.028359 | \n", "0.218618 | \n", "0.686938 | \n", "
4 | \n", "0.028985 | \n", "0.177136 | \n", "0.724608 | \n", "
\n", " | fit_time | \n", "score_time | \n", "test_score | \n", "
---|---|---|---|
0 | \n", "0.037514 | \n", "0.225316 | \n", "-62462.584290 | \n", "
1 | \n", "0.028159 | \n", "0.202306 | \n", "-63437.715015 | \n", "
2 | \n", "0.027739 | \n", "0.209377 | \n", "-62613.202523 | \n", "
3 | \n", "0.028325 | \n", "0.214590 | \n", "-64204.295214 | \n", "
4 | \n", "0.027873 | \n", "0.177630 | \n", "-59217.838633 | \n", "
\n", " | fit_time | \n", "score_time | \n", "test_neg_mse | \n", "test_neg_rmse | \n", "test_mape_score | \n", "test_r2 | \n", "
---|---|---|---|---|---|---|
0 | \n", "0.036642 | \n", "0.220047 | \n", "-3.901574e+09 | \n", "-62462.584290 | \n", "-0.227097 | \n", "0.695818 | \n", "
1 | \n", "0.027709 | \n", "0.204257 | \n", "-4.024344e+09 | \n", "-63437.715015 | \n", "-0.227546 | \n", "0.707483 | \n", "
2 | \n", "0.028423 | \n", "0.214962 | \n", "-3.920413e+09 | \n", "-62613.202523 | \n", "-0.222369 | \n", "0.713788 | \n", "
3 | \n", "0.027470 | \n", "0.213464 | \n", "-4.122192e+09 | \n", "-64204.295214 | \n", "-0.230167 | \n", "0.686938 | \n", "
4 | \n", "0.027981 | \n", "0.179939 | \n", "-3.506752e+09 | \n", "-59217.838633 | \n", "-0.210335 | \n", "0.724608 | \n", "
\n", " | fit_time | \n", "score_time | \n", "test_neg_mse | \n", "train_neg_mse | \n", "test_neg_rmse | \n", "train_neg_rmse | \n", "test_mape_score | \n", "train_mape_score | \n", "test_r2 | \n", "train_r2 | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0.030596 | \n", "0.213980 | \n", "-3.901574e+09 | \n", "-2.646129e+09 | \n", "-62462.584290 | \n", "-51440.540539 | \n", "-0.227097 | \n", "-0.184210 | \n", "0.695818 | \n", "0.801659 | \n", "
1 | \n", "0.028104 | \n", "0.199698 | \n", "-4.024344e+09 | \n", "-2.627996e+09 | \n", "-63437.715015 | \n", "-51263.979666 | \n", "-0.227546 | \n", "-0.184691 | \n", "0.707483 | \n", "0.799575 | \n", "
2 | \n", "0.027226 | \n", "0.204043 | \n", "-3.920413e+09 | \n", "-2.678975e+09 | \n", "-62613.202523 | \n", "-51758.817852 | \n", "-0.222369 | \n", "-0.186750 | \n", "0.713788 | \n", "0.795944 | \n", "
3 | \n", "0.027180 | \n", "0.206620 | \n", "-4.122192e+09 | \n", "-2.636180e+09 | \n", "-64204.295214 | \n", "-51343.743586 | \n", "-0.230167 | \n", "-0.185108 | \n", "0.686938 | \n", "0.801232 | \n", "
4 | \n", "0.027144 | \n", "0.173949 | \n", "-3.506752e+09 | \n", "-2.239671e+09 | \n", "-59217.838633 | \n", "-47325.157312 | \n", "-0.210335 | \n", "-0.169510 | \n", "0.724608 | \n", "0.832498 | \n", "
\n", " | name | \n", "deck_no | \n", "attack | \n", "defense | \n", "sp_attack | \n", "sp_defense | \n", "speed | \n", "capture_rt | \n", "total_bs | \n", "type | \n", "gen | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
124 | \n", "Electabuzz | \n", "125 | \n", "83 | \n", "57 | \n", "95 | \n", "85 | \n", "105 | \n", "45 | \n", "490 | \n", "electric | \n", "1 | \n", "
11 | \n", "Butterfree | \n", "12 | \n", "45 | \n", "50 | \n", "90 | \n", "80 | \n", "70 | \n", "45 | \n", "395 | \n", "bug | \n", "1 | \n", "
77 | \n", "Rapidash | \n", "78 | \n", "100 | \n", "70 | \n", "80 | \n", "80 | \n", "105 | \n", "60 | \n", "500 | \n", "fire | \n", "1 | \n", "
405 | \n", "Budew | \n", "406 | \n", "30 | \n", "35 | \n", "50 | \n", "70 | \n", "55 | \n", "255 | \n", "280 | \n", "grass | \n", "4 | \n", "
799 | \n", "Necrozma | \n", "800 | \n", "107 | \n", "101 | \n", "127 | \n", "89 | \n", "79 | \n", "3 | \n", "600 | \n", "psychic | \n", "7 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
33 | \n", "Nidoking | \n", "34 | \n", "102 | \n", "77 | \n", "85 | \n", "75 | \n", "85 | \n", "45 | \n", "505 | \n", "poison | \n", "1 | \n", "
458 | \n", "Snover | \n", "459 | \n", "62 | \n", "50 | \n", "62 | \n", "60 | \n", "40 | \n", "120 | \n", "334 | \n", "grass | \n", "4 | \n", "
234 | \n", "Smeargle | \n", "235 | \n", "20 | \n", "35 | \n", "20 | \n", "45 | \n", "75 | \n", "45 | \n", "250 | \n", "normal | \n", "2 | \n", "
287 | \n", "Vigoroth | \n", "288 | \n", "80 | \n", "80 | \n", "55 | \n", "55 | \n", "90 | \n", "120 | \n", "440 | \n", "normal | \n", "3 | \n", "
561 | \n", "Yamask | \n", "562 | \n", "30 | \n", "85 | \n", "55 | \n", "65 | \n", "30 | \n", "190 | \n", "303 | \n", "ghost | \n", "5 | \n", "
392 rows × 11 columns
\n", "Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('pipeline-1',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(strategy='median')),\n", " ('scaler',\n", " StandardScaler())]),\n", " ['longitude', 'latitude',\n", " 'housing_median_age',\n", " 'households',\n", " 'median_income',\n", " 'rooms_per_household',\n", " 'bedrooms_per_household',\n", " 'population_per_household']),\n", " ('pipeline-2',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(fill_value='missing',\n", " strategy='constant')),\n", " ('onehot',\n", " OneHotEncoder(handle_unknown='ignore'))]),\n", " ['ocean_proximity'])])),\n", " ('svc', SVC())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('columntransformer',\n", " ColumnTransformer(remainder='passthrough',\n", " transformers=[('pipeline-1',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(strategy='median')),\n", " ('scaler',\n", " StandardScaler())]),\n", " ['longitude', 'latitude',\n", " 'housing_median_age',\n", " 'households',\n", " 'median_income',\n", " 'rooms_per_household',\n", " 'bedrooms_per_household',\n", " 'population_per_household']),\n", " ('pipeline-2',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(fill_value='missing',\n", " strategy='constant')),\n", " ('onehot',\n", " OneHotEncoder(handle_unknown='ignore'))]),\n", " ['ocean_proximity'])])),\n", " ('svc', SVC())])
ColumnTransformer(remainder='passthrough',\n", " transformers=[('pipeline-1',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(strategy='median')),\n", " ('scaler', StandardScaler())]),\n", " ['longitude', 'latitude', 'housing_median_age',\n", " 'households', 'median_income',\n", " 'rooms_per_household',\n", " 'bedrooms_per_household',\n", " 'population_per_household']),\n", " ('pipeline-2',\n", " Pipeline(steps=[('imputer',\n", " SimpleImputer(fill_value='missing',\n", " strategy='constant')),\n", " ('onehot',\n", " OneHotEncoder(handle_unknown='ignore'))]),\n", " ['ocean_proximity'])])
['longitude', 'latitude', 'housing_median_age', 'households', 'median_income', 'rooms_per_household', 'bedrooms_per_household', 'population_per_household']
SimpleImputer(strategy='median')
StandardScaler()
['ocean_proximity']
SimpleImputer(fill_value='missing', strategy='constant')
OneHotEncoder(handle_unknown='ignore')
passthrough
SVC()
\n", " | fit_time | \n", "score_time | \n", "test_accuracy | \n", "test_precision | \n", "test_recall | \n", "test_f1 | \n", "
---|---|---|---|---|---|---|
0 | \n", "0.008283 | \n", "0.006674 | \n", "0.941176 | \n", "0.666667 | \n", "0.666667 | \n", "0.666667 | \n", "
1 | \n", "0.006897 | \n", "0.006086 | \n", "0.941176 | \n", "0.666667 | \n", "0.666667 | \n", "0.666667 | \n", "
2 | \n", "0.006335 | \n", "0.005881 | \n", "0.911765 | \n", "0.500000 | \n", "0.666667 | \n", "0.571429 | \n", "
3 | \n", "0.006494 | \n", "0.006122 | \n", "0.939394 | \n", "0.500000 | \n", "0.500000 | \n", "0.500000 | \n", "
4 | \n", "0.006614 | \n", "0.005894 | \n", "0.909091 | \n", "0.500000 | \n", "0.333333 | \n", "0.400000 | \n", "